

MERKLE & PARTNER

Engineering Office for Structural Analysis FEM, CFD Mechanical Design

Presentation at the 4th International FEMFAT User Meeting May 08, 2003

> " Evaluation of static and dynamic safety at different examples"

Sascha Hesse, Merkle & Partner

Seite 1

FEMFAT USER MEETING 2003

Aim of Presentation

Short overview of Merkle & Partner

Advantages for Merkle & Partner from the application of FEMFAT

Content

- Overview Merkle & Partner
- Basics study
- Project examples
- Discussion

Presentation of Company

Company

Foundation:

Head office:

Manager / Owner

Team:

beginning of 1989

D-89518 Heidenheim / Brenz

Dipl.- Ing. Stefan Merkle

20 employees

Areas of business

Computational services
 Structural analysis
 Fluid mechanics

Design services

Training in computational analysis

Applied Software

Structural mechanics: PRO/MECHANICA

ANSYS

I-DEAS SYSTUS+ (NASTRAN) FEMFAT

Fluid mechanics:

ICEM-CFD STAR-CD

Design:

PRO/E I-DEAS (CATIA V4)

Sascha Hesse, Merkle & Partner

Special Skills

Long-standing experience

 Intersectoral experience (more than 250 customer)

Independent of software

Basics Study

Tensile Test

 pulsating load >10⁶

 Material: St-37

 Rp0,2
 =220 N/mm²

 Rm
 =370 N/mm²

 σS,ZD
 =220 N/mm²

Safety against abuse?

Proof of long fatigue strength possible?

How many percent of the force can be borne?

Sascha Hesse, Merkle & Partner

Analytical Approach:

Statical proof of strength:

 $s_F = R_{p0,2} / \sigma_{Mises} = 220/273 = 0.81$ $s_F = R_m / \sigma_{Mises} = 370/600 = 0.62$

(concept of nominal stress)

(only reasonable for local notch stress !)

Dynamic:

 $\sigma_{S,ZD}$ = 220 N/mm² (pulsating endurance strength St-37) s_F = $\sigma_{S,ZD}$ / σ_{Mises} = 220/600 = 0,37

Material strength cannot be proven.

Recommendation: plastic analysis

Nonlinear Plastic Analysis

static ultimate load (at 5 % strain) = 92% of the total load safety against abuse load 0,92 ideal-plastic material behavior, $R_{p0,2}$ =220 N/mm²

Sascha Hesse, Merkle & Partner

comparing stress von Mises (92% load)

Von mises stress Time 0.919999 (Ref. Global)

Min = 0.908757 Max = 231.929

plastic strain (92% load)

Sascha Hesse, Merkle & Partner

FEMFAT USER MEETING 2003

Analysis with FEMFAT

Safety against abuse load: 0,87

Safety against endurance load: 0,56

Comparison of the Results, static

Comparison of the Results, dynamic

Safety Factors, dynamic

Result:

- Statements without precise consideration are very conservative in this case
- Results with FEMFAT are conservative compared to plastic material behavior, however acceptable
 - Analysis with FEMFAT is suitable for reducing extensive plastic analysis of breaking strength

Clutch Membrane

Renk AG in Rheine

2001000000000

Load: Torsion

Rm: 1250 N/mm²

Rp0,2: 1050 N/mm²

Question:

Which maximum load can be borne statically?

How does the rupture proceed?

 σ Mise, notch = 2110 N/mm²

 σ Mise, membrane = 1400 N/mm²

MER

LE

Analysis with FEMFAT

safety against abuse load: 0,82

safety against abuse load : 0,60

Nonlinear, Ideal-Plastic Analysis

plastic strains

immediately before the break

during rupture ! Supporting-effect no longer present !

Sascha Hesse, Merkle & Partner

Page 21

Result:

Cause of damage due to analysis with FEMFAT: notch stress at 58% of load membrane stress at 82 % of load

Cause of damage due to ideal-plastic approach: membrane stress reaches yield strength (at 70 % of load) no conclusion possible about bearable load in notch

Cause of damage during experiment: rupture pattern corresponds to plastic analysis rupture does not start in notch !

Steering knuckle (Achsschenkel)

Röchling-Getriebe KG in Meppen

Safety against Abuse Loads ? Safety against Endurance Load ?

Load Case Combination

Load case	LCC1	LCC2	LCC3	LCC4	LCC5	LCC6	LCC7	LCC8
Vertical (Fv)	100	100	100	100	50	50	50	50
Transversal (Ft)	10	10	-10	-10	10	10	-10	-10
Longitudinal (FI)	30	-30	30	-30	30	-30	30	-30
Bearing pre-stress const.				120				

Ft

Fv

FI

static analysis of 4 load cases

critical notches load case combination 4 $(\subset$

Preparation of 8 stress files (load case combinations) from 4 load cases

28 FEMFAT-Analysis against endurance load (8 load case combinations compared against one another in batch-mode).

Fortran-program: smallest safety factor at each node from 28 stress files → written to 29th stress file

Evaluation of safety factors (29th stress file)

Safety against Endurance Load:

	LCC1	LCC2	LCC3	LCC4	LCC5	LCC6	LCC7	LCC8
LCC1					R			
LCC2	2,40							1
LCC3	>5	1,92						
LCC4	2,18	>5	2,33			1.1		
LCC5	>5	2,62	2,70	1,85				
LCC6	1,94	>5	1,61	2,64	2,48			
LCC7	>5	2,31	>5	2,52	>5	1,98		
LCC8	2,34	>5	1,89	>5	2,14	>5	2,41	

Result:

- Optimization of the initial variant with FEMFAT
- Sufficient accuracy, as there are no damage cases in the experiment
- Analogous procedure for further spindle parts: fork carriage, axle bearing bolt, planet carrier, wheel flange, break carrier flange, break disk flange, intermediate flange, and bevel gear casing
- Time advantage, since a plastic analysis can be omitted
- Time advantage, since the static load cases are created in FEMFAT and compared against each other → only the smallest safety factor for each node is evaluated graphically

Discussion?