

Engineering Center Steyr GmbH & Co KG (ECS)

5. Grazer Nutzfahrzeug Workshop, 11. Mai 2012 Virtuelle Iteration von Lastdaten zur Komponenten und Fahrzeugbewertung

DI Dr. Thomas Mrazek, DI Dr. Oliver Grieshofer

LOAD DATA ANALYSIS

Content

- Motivation for Virtual Iteration
- General Approach of Virtual Iteration
- Example "8x4 Truck" (Full Vehicle) with invariant road excitation for fatigue and comfort
- Example "Suspension Test Rig" with invariant strains for test bench modifications

Motivation:

- to generate external loads based on internal, measured response
- to get invariant excitations for parameter variation
- for fatigue and comfort investigation
- for modification/optimization of test bench concepts

Inverse non-linear problem: find loads for given responses

LOAD DATA ANALYSIS

Virtual Iteration General Approach

MAGNA POWERTRAIN

LOAD DATA ANALYSIS

Date: 11.05.2012 Team Full Vehicle

© ECS / Disclosure or duplication without consent is prohibited

Virtual Iteration General Approach

LOAD DATA ANALYSIS

6. Response = desired

5. Response

4. Drive signal

[mm]	CHEGI-IQ_FAL_le		OVERLOAD_2FA_EKAR_02CAME	R_XFA_FZ_COBJECTED_0.DRV
20.0 - 2.6 as 24.6 [-P-P-40.3 [mm]
0.0 0.0-Min-15.7				
2.0	30 CRM - 172 FAL at	4.0	50	D TO THE TRANSPORT
0.0 Mes 23.2 [P-P 42.0 (mm)
0.0	- Com	~		
2.0	30	4.0	50 6	a Taj
in the second	CIRCO - DZ, FA2, in		OVERLOAD_2FA_EKAR_02CAME	R XFA FZ CORRECTED O.DRV
10.0 Max 20.9				P-P-4L7 (mm)
10.0 Min - 20.8				
2.0	3.0 C504 - DZ, FA2 11	4.0	5.0 OVERLOAD 2FA EKAR 02CAME	D THE TRANSPORTED ADRY
30.0 Mes 19.7 [and A			F-P-36.7 (mm)
Min-17.0		~~~~~	~	
2.0	3.0	4.0	5.0	0 70
20.0 Mm 20.1 [X	COLUMN DE ALER DE CAL	7-P 37.2 [mm]
38		\sqrt{n}	~~	
2.0	30	4.0	50	
(mere)	CHD6 - DZ_RAL_H		OVERLOAD 2FA FEAR 02CAME	R_XFA_FZ_CORRECTED_0.DRV
150-Mex 18.2 [1 0		P-P-3L3 (nor)
-50 Min -13.0	[mn]	Contraction of the second		
2.0	3.0	4.0	5.0	
20.0	nn)	· 🔨 · · ·		P-P-42.1 (mm)
0.0-	ine)	$\sqrt{1}$		
2.0	30	4.0	5.0 6	a 70
(mm)	CHOR- DZ RA2 ri		OVERLOAD 2FA EKAR 02CAME	R XFA FZ CORRECTED G.DRV
20.0 - 24.5 x 26.3 (10.0		\wedge		-P-P 44.1 [nm]
0.0- 10.0-Min-17.7	[mi]	\checkmark		

Result check during virtual iteration process basing on:

- signals in time domain (quality check)
- peak-to-peak values of signals in time domain (quantity check)
- signals in frequency domain (PSD)
- relative damage value of simulation compared to measurement

Virtual Iteration Project Overview

LOAD DATA ANALYSIS

- Road load data acquisition with benchmark vehicle
- Virtual iteration to invariant road excitation (8-poster)
- Transfer of invariant signals to different vehicle
- Analysis of vertical loaded parts or subsystems possible, e.g. frame (chassis parts not suitable)

Date: 11.05.2012 Team Full Vehicle

New developed vehicle

LOAD DATA ANALYSIS

- MBS model of measurement vehicle
- Virtual iteration of different test tracks (bumps, rough roads, washboards, twisting)

Model-check (measurement)

- Vertical forces at axle
- Damper forces

Date: 11.05.2012

Team Full Vehicle

© ECS / Disclosure or duplication without consent is prohibited

LOAD DATA ANALYSIS

Date: 11.05.2012 Team F

Team Full Vehicle

© ECS / Disclosure or duplication without consent is prohibited

LOAD DATA ANALYSIS

Results of this investigation can be used for:

- Fatigue investigation investigating different concepts changing vehicle parameter allocate to concept vehicle
- Comfort investigation modifying suspension parameter modifying cab properties

COMFORT VALUES A and B

time

LOAD DATA ANALYSIS

DAIMLER Arcedes-Benz

- Endurance strength verification of the chassis is based on proving ground testing (torture track and maneuver like braking, weaving, ...) at Daimler AG
- Development of simplified test rig for semi-trailing arm
- Verification of damage distribution

LOAD DATA ANALYSIS

vehicle configuration: spring and damper

test rig configuration: rigid rod, no damper

- Efficiency improvement with a rigid spring/damper
- No cooling of damper necessary
- Replacement of elastomer omitted
- Target: Strain gauge signals unchanged
- Excitation: Torture track, braking, weaving

Why do we need Virtual Iteration?

- Different boundary conditions for test bench: suspended and with rigid rod
- Excitation of both systems with identical loads on wheel hub
- Different strain results inside semi-trailing arm due to changed boundary conditions
- Target: tuning of excitation to gain identical strains at semi-trailing arm

LOAD DATA ANALYSIS

• Drive

forces and torques applied on wheel hub

- Lateral torque not applied on wheel hub during driving
- Additional constraint during breaking maneuver
- Response

seven strain gauges on semitrailing link

FEMFAT LAB vi

LOAD DATA ANALYSIS

- Iteration result: Modified time signal for all forces and torques of rigid test bench
- Simulation of strains by application of modified loads on model with rigid rod
- Goal accomplished: Same strains in both models

Date: 11.05.2012 Team F

FEMFAT LAB vi

LOAD DATA ANALYSIS

FEMFAT LAB vi

LOAD DATA ANALYSIS

- Verification of damage location with modified boundary conditions and loads
- Calculation of damage distribution based on simulation results for both models
- Comparison: Similar damage distribution with no additional hot spots

Team Full Vehicle

Benefits of Virtual Iteration:

- Simple and cheap measurements for vertical road excitations
- Efficient method to generate absolute displacements (e.g. wheel patch, frame movement)
- No complex tire model required for vertical load
- No road surface scanning required
- Model verification and trimming by additional checking signals
- Absolute fatigue life prediction possible
- Efficient parameter studies and transfer to similar vehicles
- Method applicable for wide range of vehicle components
- Assessment of test bench concepts (viability, simplifications)

Thank you for your kind attention!