FEMFAT Modules

The fatigue software package FEMFAT consists of designated modules - each for particular use and more powerful if combined.

FEMFAT basic
Standard/Minimum configuration; includes all the interfaces and material database, handles 2 stress states plus one assembly loadcase for life or safety factor analysis.

FEMFAT plast
Module to consider the effect of mean stress rearrangement from linear stresses when local plastic deformation occurs.

FEMFAT strain
A software module for assessing damage from measured strains and comparing stresses from FEA and testing.

FEMFAT spot
Module for predicting fatigue of spot-joints (welds, rivets) in FE-shell structures.

FEMFAT heat
For low cycle fatigue analysis of components which are exposed to thermo mechanical loads (e.g. cylinder heads, exhaust manifolds) and suffer from mechanical, creep and oxidation damage.

FEMFAT parallel
Take the advantage to use more than only one CPU of your multicore workstation to speed up your analysis.

FEMFAT strain
A software module for fatigue life prediction on layered infinite fiber reinforced materials.

FEMFAT spot
Module for predicting fatigue of spot-joints (welds, rivets) in FE-shell structures.

FEMFAT weld
Module for fatigue analysis of welding seams for steel and aluminum using notch stress method and standards (DIN 15014, EUROCODE 3 and 9, BS 7608, IVM).

FEMFAT break
A software module for assessing static safety factors in combination with BASIC or MAX.

FEMFAT weld
Module for fatigue analysis of welding seams for steel and aluminum using notch stress method and standards (DIN 15014, EUROCODE 3 and 9, BS 7608, IVM).

FEMFAT parallel
Take the advantage to use more than only one CPU of your multicore workstation to speed up your analysis.

FEMFAT strain
A software module for fatigue life prediction on layered infinite fiber reinforced materials.

FEMFAT spot
Module for predicting fatigue of spot-joints (welds, rivets) in FE-shell structures.

FEMFAT heat
For low cycle fatigue analysis of components which are exposed to thermo mechanical loads (e.g. cylinder heads, exhaust manifolds) and suffer from mechanical, creep and oxidation damage.

FEMFAT parallel
Take the advantage to use more than only one CPU of your multicore workstation to speed up your analysis.

FEMFAT strain
A software module for fatigue life prediction on layered infinite fiber reinforced materials.

FEMFAT spot
Module for predicting fatigue of spot-joints (welds, rivets) in FE-shell structures.

FEMFAT heat
For low cycle fatigue analysis of components which are exposed to thermo mechanical loads (e.g. cylinder heads, exhaust manifolds) and suffer from mechanical, creep and oxidation damage.

FEMFAT parallel
Take the advantage to use more than only one CPU of your multicore workstation to speed up your analysis.

FEMFAT strain
A software module for fatigue life prediction on layered infinite fiber reinforced materials.
Finite Element Method Fatigue

FEMFAT performs fatigue analyses in combination with widely used finite element programs. Interfaces to multibody, optimization and measurement systems ensure full and convenient integration into the customers’ CAE processes. FEMFAT provides engineers with reliable information on the fatigue life of structures to improve critical locations and/or reduce the total weight at an early stage of the design process, long before time-consuming and expensive tests are scheduled. This results in high quality prototypes and less testing effort.

Method, Theory and Validation

The methods used in FEMFAT are based on:
- The latest scientific findings of the German FKM guideline
- The work of Huck/Thrainer/Schutz (synthetic S/N curves)
- The local stress-strain model (TU Darmstadt)
- The R1MS concept for the assessment of welding seams
- ECS-proprietary methods, for example computing the notch influence in terms of the relative stress gradient

FEMFAT takes many important and interacting fatigue influences into consideration; e.g., local material properties, notches, mean stresses, surface roughness, surface treatments (thermal, mechanical), boundary layers, temperature fields, local plasticity, technological sizes, effective plastic strain, fiber orientation in FRP and CFRP etc. In addition special behavior of welds, spot welds, self piercing rivets and laminates are considered. Multi-axial loading in time and frequency domain, as well as low cycle fatigue from temperature loading. Any fatigue problem in vehicle and machinery industry can be investigated.

Conclusion

FEMFAT is a comprehensive tool that provides quick and reliable answers concerning the release of components. FEMFAT combines know how from the special fields Finite Element Method, characterization of material properties and fatigue testing. Its graphic user interface guides the user step by step. Very few modifications to the default settings are required to carry out a fatigue analysis.

FEMFAT Interfaces

- Abaqus
- ADAMS
- ADVC
- ANSYS
- COSMOS
- CREO
- DIadem
- DigiNAT
- HYPERMESH
- I-DEAS
- LS-DYNA
- Marc
- Medena
- MoldFlow
- MotionSolve
- Nastran
- nCode
- Optistruct
- Patran
- Permas
- Pro/MECHANICA
- Radioss
- Rpc
- SimPack
- Tecmat
- Tosca

Supported Hardware Platforms

- Intel/AMD x64, 64Bit, Windows 7 or higher
- Intel/AMD x64, 64Bit, Linux using glibc 2.5 or higher

Additional Platforms for License Service

- Intel/AMD x86, 32Bit, Windows 7 or higher
- Intel/AMD x86, 32Bit, Linux using glibc 2.5 or higher

Your Benefits

Efficiency and high quality are an absolute must for all our customers, from ALSTOM to YAMAHA. And this is exactly what FEMFAT stands for as a leading fatigue analysis code. Not only the automotive industry benefits from highlights like:
- Fatigue life, damage and safety factors for all types of load
- Comprehensive FEM-interfaces/material database
- Open SPOT and WELD database
- FEMFAT Datacrypt for the encryption of ASCII files (e.g. confidential material data set) into binary format
- Direct and fast visualization
- Assess linear or nonlinear FEM stresses from static or dynamic analysis
- More than 1000 material datasets and material generator
- Interfaces for importing load histories from multi body simulations and measurements
- Full choice of influence parameters on fatigue analysis
- Renewables Certification by GL Industrial Services GmbH
- Faster results by parallelized analyses
- Flexible licensing; purchase, lease or internet license (pay per use)